Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biomol Struct Dyn ; : 1-11, 2021 Sep 02.
Article in English | MEDLINE | ID: covidwho-2282029

ABSTRACT

Over the past years, rational drug design has gained lots of attention since employing it gave the world targeted therapy and more effective treatment solutions. Structure-based drug design (SBDD) is an excellent tool in rational drug design that takes advantage of accurate methods such as unbiased molecular dynamics (UMD) simulation for designing and optimizing molecular entities by understanding the binding and unbinding pathways of the binders. Supervised molecular dynamics (SuMD) simulation is a branch of UMD in which long-duration simulations are turned into short simulations, called replica, and a specific parameter is monitored throughout the simulation. In this work, we utilized this strategy to reconstruct the unbinding pathway of the anticancer drug dasatinib from its target protein, the c-Src kinase. Several unbinding events with valuable details were achieved. Then, to assess the efficiency and trustworthiness of the SuMD method, the unbinding pathway was also reconstructed by conventional UMD simulation, which uncovered some of the limitations of this method, such as limited sampling of the active site and finding the metastable states in the unbinding pathway. Furthermore, in times like these, when the world is desperate to find treatments for the Covid-19 disease, we think these methods are of exceptional value.Communicated by Ramaswamy H. Sarma.

2.
PLoS One ; 16(5): e0251910, 2021.
Article in English | MEDLINE | ID: covidwho-1234593

ABSTRACT

The COVID-19 disease has infected and killed countless people all over the world since its emergence at the end of 2019. No specific therapy for COVID-19 is not currently available, and urgent treatment solutions are needed. Recent studies have found several potential molecular targets, and one of the most critical proteins of the SARS-CoV-2 virus work machine is the Papain-like protease (Plpro). Potential inhibitors are available, and their X-ray crystallographic structures in complex with this enzyme have been determined recently. However, their activities against this enzyme are insufficient and need to be characterized and improved to be of clinical values. Therefore, in this work, by utilizing the Supervised Molecular Dynamics (SuMD) simulation method, we achieved multiple unbinding events of Plpro inhibitors, GRL0617, and its derivates, and captured and understood the details of the unbinding pathway. We found that residues of the BL2 loop, such as Tyr268 and Gln269, play major roles in the unbinding pathways, but the most important contributing factor is the natural movements and behavior of the BL2 loop, which can control the entire process. We believe that the details found in this study can be used to refine and optimize potential inhibitors like GRL0617 and design more efficacious inhibitors as a treatment for the SARS-CoV-2 virus.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites/drug effects , COVID-19/enzymology , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Papain/metabolism , Protease Inhibitors/chemistry , Protein Binding/drug effects , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL